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Abstract: This paper evaluates the robustness of FS-ALOHA, a random
access algorithm used to reserve uplink—that is, from the end user to the
network—bandwidth in centralized wireless access networks. The perfor-
mance of FS-ALOHA when subject to Poisson arrivals and operating on
an error free channel was evaluated in [3] by means of a Quasi-Birth-Death
(QBD) Markov chain. In this paper we relax these assumptions and study
discrete time batch Markovian arrivals on a channel with memoryless errors
by means of a Markov chain of the GI/M/1 type. It is concluded that FS-
ALOHA performs well under correlated and bursty arrivals and memoryless
errors. However, error rates above 1/5T, where T is a protocol parameter,
can seriously increase the delays suffered on the contention channel and might
even make the system unstable. Finally, it is concluded that implementing
multiple instances of FS-ALOHA can significantly improve the delays and
the robustness of the algorithm.

1 Introduction

There are, roughly speaking, two ways to transmit information on a commu-
nication channel that is shared among multiple users. Either, the protocol
followed by the users avoids that two or more users transmit information
at the same time, or it allows for simultaneous transmissions to occur. In
the first case we refer to the channel as a contention free channel, in the
latter case, the channel is referred to as a contention channel. Simultaneous
transmissions are commonly known as collisions (between information) and
any information that collides is considered lost, that is, the receiver is unable
to retrieve the original information. Although collisions always result in the
loss of information, there are many situations in which it is beneficial to use
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a protocol that allows for collisions to occur, e.g., when the number of users
is large and each user uses the channel on a sporadic basis.

A protocol that operates on a contention channel is called a random access
algorithm (RAA) or a random access protocol. The functionality of a RAA
is often subdivided as follows:

e Controlling the transmission of new informantion. This task is referred
to as the channel access protocol (CAP).

e Managing retransmission after a collision occured. A task that is re-
ferred to as the contention resolution algorithm (CRA).

Thus, a RAA is a combination of a CAP and a CRA. One way to classify
RAAs is to subdivide them based on their CAP. In this case, there are two
main categories: RAAs with free and RAAs with blocked access, meaning
that either users that generate a new information packet transmit this in-
formation immediately, or they are blocked until a certain event occurs. A
subclass of the RAAs with blocked access are the RAAs with grouped access.
In this particular case, new arrivals are grouped based on their arrival time
and packets belonging to a certain group are not allowed to make a first
transmission attempt until all the packets belonging to the previous groups
have been transmitted successfully. A packet is successfully transmitted if it
did not collide with another packet.

FS-ALOHA is a RAA that can be regarded as a RAA with grouped
access because the requests—we refer to information packets transmitted on
the contention channel as requests—are grouped in Transmission Sets (TSs)
so that just one TS attempts transmission at a time (i.e., a subset of all
pending requests). Also, the requests belonging to a certain TS use a CRA,
in the case of FS-ALOHA one uses slotted ALOHAZ?, to gain access to the
medium. Hence, FS-ALOHA combines the simplicity of slotted ALOHA with
the efficiency obtained by grouping the requests that arrive at the mobile
stations (MSs). Although FS-ALOHA was designed to reserve bandwidth in
centralized wireless access networks, it can be used for the same purpose in
hybrid fiber coaxial cable (HFC) networks as an alternative for the binary
exponential backoff (BEB) algorithm.

A Quasi-Birth-Death (QBD) Markov chain that allowed the performance
evaluation of FS-ALOHA on an error free channel subject to Poisson ar-
rivals was developed in [3]. This study indicated that FS-ALOHA is capable
of guaranteeing low delay bounds and high throughput rates. Moreover,
FS-ALOHA was shown to outperform ALOHA both in terms of delay and

2The slotted ALOHA algorithm is described in the next Section.



throughput. In this paper we address the robustness of FS-ALOHA and
develop a Markov chain of the GI/M/1 type that allows us to evaluate FS-
ALOHA on a channel with memoryless errors and D-BMAP arrivals. Thus,
we can see how bursty and correlated arrivals, as well as errors, influence the
performance of the algorithm. We also investigate whether some of the en-
gineering rules, obtained from the study in [3], still apply in such errorprone
systems with bursty and correlated arrivals.

Although FS-ALOHA is not believed to be as powerful as a RAA with
grouped access that uses a tree algorithm [1]—also known as a splitting
algorithm or an algorithm of the CTM type—as its CRA, it presents an
attractive tradeoff between simplicity, that is, the ease to implement the
algorithm, and its performance. The fact that simplicity is indeed a major
player in the standardization of any Medium Access Control (MAC) layer was
demonstrated once more during the development of the DOCSIS standard
for HFC networks. Finally, it should be noted that, from an information
theoretical point of view, FS-ALOHA is a full-sensing algorithm?; hence, it
belongs to the same class of algorithms as the RAA with grouped access that
uses a tree algorithm as its CRA.

The remainder of this paper is structured as follows. FS-ALOHA is de-
scribed in Section 2. An informal outline of the model is given in Section 3.
Section 4 and 5 present the analytical models used to evaluate FS-ALOHA.
Numerical results can be found in Section 6 and conclusions are drawn in
Section 7.

2 FS-ALOHA Algorithm: a Review

In this section the operation of FS-ALOHA, and the environment in which it
operates, are described in some detail, additional comments and discussions
can be found in [3]. Consider a cellular network with a centralized architec-
ture, i.e., the area covered by the wireless access network is subdivided into
a set of geographically distinct cells each with a diameter of approximately
100m. Each cell contains a base station (BS) serving a finite set of mobile
stations (MSs). This BS is connected to a router, which supports mobil-
ity, realizing seamless access to the wired network. Two logically distinct
communication channels (uplink and downlink) are used to support the in-
formation exchange between the BS and the MSs. Packets arriving at the
BS are broadcasted downlink, while upstream packets must share the radio

3This means that a user requires feedback, that is, an indication that a packet collided
or not, from the channel for each packet transmission attempt made on the channel and
not merely for its own packet transmission attempts.



medium using a MAC protocol. The BS controls the access to the shared
radio channel (uplink). A different frequency band is used for the uplink and
downlink traffic (that is, the access technique is Frequency Division Duplex
(FDD)).

Traffic on both the uplink and downlink channel is grouped into fixed
length frames, with a length of L time slots, to reduce the battery consump-
tion? [11]. The uplink and downlink frames are synchronized in time, i.e.,
the header of a downlink frame is immediately followed by the start of an
uplink frame (after a negligible round trip time that is captured within the
guard times®, see Figure 1). Each uplink frame consists of a fixed length
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Figure 1: Frame Structure

contentionless and a fixed length contention period, where the length of the
contentionless period, in general, dominates that of the contention period.
An MS is allowed to transmit in the contentionless period after receiving a
permit from the BS. The BS distributes these permits among the MSs based
on the requests it receives from the MSs and the existing QoS agreements
between the end users and the network. These requests are used by MSs
to declare their current bandwidth needs to the BS, e.g., by indicating how

4The frame structure enables the BS to inform the MSs, at the start of the frame,
about the destination addresses of the downlink packets within the frame. As a result, an
MS can switch to the sleep mode for the remaining frame time, unless there is a packet
destined for this MS.

°A guard time is a small time interval at the end of each time slot during which the
MSs and the BS do not transmit information. Guard times are necessary to avoid that a
collision can occur between a packet that is transmitted in time slot £ and £+ 1. Indeed, any
information transmitted, i.e., broadcasted, by an MS (or the BS) needs a small fraction of
time to reach the other MSs, therefore, the guard time has to be larger than the maximum
time required by an electromagnetic wave to travel from an arbitrary MS to any other
MS. Given the small size of the cells (approximately 100m), we get a small guard time.



many packets they have ready for transmission. Requests are transmitted
using the contention channel, unless the MS can piggyback it to a data packet
for which a permit was already obtained, thereby reducing the load on the
contention channel.

A request is generally much smaller than a data packet; therefore, slots
part of the contention period can be subdivided into & minislots (realistic
values for k in a wireless medium are 1 to 3, in a wired medium higher values
for k are possible). Each downlink frame starts with a frame header in which,
among other things, the required feedback on the contention period of the
previous uplink frame is given. This informs the MSs participating in the
contention period whether there was a collision or whether the request was
successfully received.

FS-ALOHA operates on the slots that are part of the fixed length con-
tention period. Define T" as the number of minislots part of the contention
period of a frame. From hereon we refer to minislots as slots. In slotted
ALOHA systems, an MS with a pending request will randomly choose one
out of the T slots to send its request in the hope that no other MS with
a pending request will choose the same slot. If an MS is unsuccessful, i.e.,
another MS also decided to transmit in this particular slot, it will retransmit
the request in one of the T slots in the next frame. It is important to note
that with slotted ALOHA, new requests join the competition immediately
after being generated; hence, they are not blocked. FS-ALOHA on the con-
trary, divides the T slots of the contention period into two disjoint sets of S
and N slots such that T'= S+ N. The operation of FS-ALOHA is as follows:

e Newly arrived requests are transmitted, for the first time, by randomly
choosing one out of the S slots; this is the first set of S slots after the re-
quest was generated. If some of these transmissions were unsuccessful,
because multiple MSs transmitted in the same slot, the unsuccessful re-
quests are grouped into a Transmission Set (TS), which joins the back
of the queue of TSs waiting to be served.

e The other N slots are used to serve the queue of backlogged TSs on
a FIFO basis. A TS is served using slotted ALOHA, that is, all the
requests part of the TS select one out of the N slots and transmit in
this slot. The requests that were transmitted successfully leave the TS,
the others retransmit in the NN slots of the next frame using the same
procedure. The service of a TS lasts until all the requests part of the
TS have been successfully transmitted, in which case the service of the
next TS, if there is another TS in the queue, starts service in the N
slots of the next frame.



Hence, two parameters play an important role in FS-ALOHA:

e The number of S > 1 slots in a frame. These slots are used to transmit
newly arrived requests; S determines the TS generation rate.

e The number of N > 2 slots in a frame. These slots are allocated to the
service of the backlogged TSs in the distributed queue.

Notice, two requests that were generated in different frames can never be part
of the same TS. Thus, it is said that the grouping of requests in Transmission
Sets is based on a time period corresponding to the frame length. Therefore,
FS-ALOHA can be regarded as a RAA with grouped access that uses Slotted
ALOHA as its CRA, that is, the algorithm used to resolve the TSs is Slotted
ALOHA. More details and extensions of FS-ALOHA can be found in [3, 2].

3 An Informal Outline of the Model

Before we proceed with a detailed description of the model, it might be useful
to outline how to translate the operation of FS-ALOHA to a queueing system.
We wish to evaluate the performance of FS-ALOHA under correlated and
bursty arrivals, therefore, we assume that new requests generated by the
MSs arrive according to a D-BMAP arrival process. The time unit of the
D-BMAP is chosen to be one frame. Thus, provided that the D-BMAP
is characterized by the matrices Dy, Dy, ..., there is a probability (D;);, j,
that ¢ new request, each originating from a different MS, are generated in
a frame, provided that the D-BMAP is in state j;, resp. jo, at the start,
resp. end, of the frame. A first transmission attempt for each of these i new
requests will take place in the S slots of this frame (that is, each of the i
corresponding MSs selects one of the S slots and transmits its request in this
particular slot). If all i are successful, meaning that each of the i requests
was transmitted in a different slot, we state that there is no customer arrival
(that is, no TS is being formed). Otherwise, the unsuccessful requests are
grouped to form a TS and this transmission set is considered a customer of
our queue. The number of requests part of a TS varies (each TS holds at
least two requests); hence, we state that a customer is of type k if there are
k — 1 requests part of the TS. As a result, the input process of our queue
can be regarded as a discrete time MMAP[K] arrival process that generates
either zero or one customer during a time instance (the value of K is equal
to maximum number of requests ¢, that can be generated in a single frame
minus one).



The service time of a customer of type k equals the number of frames re-
quired to successfully transmit each of the k£ —1 requests part of the TS. Dur-
ing each frame, each of the requests that remain in the TS will be transmitted
in one of the N slots. Those requests that were successfully transmitted—
recall that a request is successfully transmitted if it is the only request to
select a particular slot—leave the TS. The unsuccessful requests remain in
the TS. Thus, the progress of a service of a customer, i.e., TS, can be rep-
resented at the start of each frame by the number of requests that remain
within the TS. Hence, the service time distribution of a type k customer
can be represented as a discrete time phase type distribution, with matrix
representation (my, Ty, o), where the phase represents the number of re-
quests left in the TS. As a result, the queue holding the TSs is nothing but
a MMAP|[K]/PH[K]/1 queue. We could generalize the idea introduced in
this paper to obtain a procedure that calculates the delay distribution of a
type k customer in an arbitrary MMAP[K]/PH[K]/1 queue [9] and apply this
general approach to this particular queue. However, in this case we are not
interested in the delay distribution of a type k customer, but in the delay
of a request. Moreover, the service time distributions of all the customers
are very similar. Indeed, we could define a matrix 7" such that the service
time distribution of a type k£ customer is identical to the phase type distri-
bution represented by (m, T, «y). The integer m and the matrix T are equal
to Mmaz and Tpaz, where (Mpmaz, Tinae, Qmaz) Was the representation of the
service time distribution related to a T'S with ¢, requests. The entries of the
vector qy, are identical to zero, except for the k-th entry which equals one.

4 Performance Evaluation of FS-ALOHA on
an Error Free Channel

4.1 Analytical Model

In this section an exact analytical model is developed, allowing the compu-
tation of the delay density function associated to the request packets under
the following conditions:

e We assume a D-BMAP request arrival process with a mean rate of A
arrivals per frame.

e The number of slots T for contention is fixed and within these T slots,
S > 0 are used by the new arrivals and N > 1 are used for the service
of the Transmission Sets in the queue.



e If there are no Transmission Sets in the queue nor in service, the total
T =S5 + N slots is used by new arrivals.

e The Bit Error Rate (BER) is assumed to be zero, this assumption is
relaxed further on.

These assumptions are identical to [3], except that we assume D-BMAP ar-
rivals instead of Poisson arrivals. In the next section we will also relax the
assumption on the BER. For Poisson arrivals one obtains a QBD Markov
chain by observing the couple (¢, Q) at the start of each frame, where ¢ rep-
resents the number of requests in the TS that is currently in service (provided
that a TS is in service) and Q) is the number of TSs waiting in the distributed
FIFO queue®. If we consider the same stochastic process for D-BMAP ar-
rivals and add the current state of the D-BMAP, say 7, we no longer have a
Markov chain. Therefore, a different approach is required; the basic idea is
to remember the “age” of the TS currently in service instead of the number
of TSs waiting in the TS queue’. The state of the system is modeled by the

triple (¢, j, @), where

e ¢ > 2 denotes the number of requests in the Transmission Set that is
currently in service (if there is a Transmission Set in service).

e j denotes the state of the D-BMAP associated with the frame that
follows the frame in which the Transmission Set currently in service
was generated (if there is a Transmission Set in service, otherwise it is
the state of the D-BMAP associated with the current frame).

e () indicates how many frames ago the Transmission currently in service
Set was created (@) = 0 if there is no Transmission Set in service).

For instance, (q,j,Q) = (4,7,3) indicates that 4 requests will attempt a
transmission in the N slots of the current frame, say frame n. Each of these

6Tevel 0 consists of one state that corresponds to the case where there are no TSs
waiting in the queue and there is no TS in service, level i > 0 consists of multiple states
that correspond to the case where there are i — 1 TSs waiting in the queue and a TS is in
service (the j-th state of level 7 indicates that there are j + 1 requests left in the TS).

"This trick can also be used to obtain the waiting time distribution for each class of
customers in a discrete time FCFS MMAP[K]/PH[K]/1 queue provided that the MMAP[K]
arrival process has Dy = 0 for all strings J with a length |.J| > 1 (i.e., the customers arrive
one at a time). In this case one remembers: the age of the customer currently in service,
its class type, the state of its service and the state of the MMAP[K] input process. Because
the age can only increase by one at a time we obtain a GI/M/1 Type Markov chain by
observing the system at each time slot. Moreover, in [9], we have generalized this technique
to MMAP[K] arrival processes with batch arrivals.



4 stations has had at least 1, in frame n — 3, and at most 3 unsuccessful
attempts in the previous 3 frames (depending on the service completion time
of the previous TS) and the state j of the D-BMAP determines the number
of requests that make use of the S slots in frame n — 2. If, for example, 2
of the 4 request are transmitted successfully (within the N slots of frame n),
the new state, associated with frame n + 1, would be (2, j,4).

Notice that this model can be used for Poisson arrivals as well. More-
over, although the model in [3] uses a QBD Markov chain, the calculations
required to obtain the delay distribution from the steady state probabilities
are cumbersome. Whereas with this model, that uses a GI/M/1 type Markov
chain, one obtains the delay distribution from the steady state probabilities
by means of a simple formula (see Section 4.5).

4.2 Transition Matrix

The transitions in the system take place at the start of each frame. The
maximum value of ¢, say ¢,,, corresponds to the highest possible i for which
D; contains entries that differ from zero, where D; are the [ x [ matrices
that characterize the input D-BMAP traffic. For D-BMAPs that do not
posses such an index i or for D-BMAPs for which this index i is very large,
we choose ¢, such that the sum of the entries of the matrices D;,7 > ¢, is
negligible. Therefore, the impact on the accuracy of the results is minimized.
The range of j is equal to {j | 1 < j < [}. During a state transition, @) can
never increase by more than one.

Therefore, the system can be described by a transition matrix P with the
following structure:

B, B, 0 0 0
B, A Ay O 0o ...
P = B; Ay Ay AO 0 ... (1)
By, A3 Ay, A Ag

where A; are (g, — 1) X (g, — 1) matrices, B;,i > 1, are (g, — 1) x I
matrices, By is an [ x [ matrix and By is an | x (¢, — 1) matrix.

The matrices By and By describe the system when the current frame
is not serving a Transmission Set () = 0). This implies that the total of
T = S + N slots is used for new arrivals. By describes the transitions when
a Transmission Set is generated within these T slots, whereas B; describes
the situation in which no Transmission Set is generated.



The matrices A; and B;,7 > 1, hold the transition probabilities provided
that a Transmission Set ¢ is in service in the current frame. Ay covers the
case in which the service of the current Transmission Set ¢ is not completed
within the current frame. The transition probabilities held by the matrices
A;,1 > 0, correspond to the following situation: the service of the current
Transmission Set ¢ is completed within the current frame, say frame n, and
the first ¢ — 1 frames following frame n — @, i.e., the frame in which the
Transmission Set ¢ was generated, do not generate a new Transmission Set,
whereas frame n — @ + i (< n) does generate a new Transmission Set. The
matrices B;,7 > 1 on the other hand correspond to case where the service of
the current Transmission set ¢ is completed within the current frame, frame
n, and the first i — 1 (= Q) frames following frame n — @@ do not generate a
new Transmission Set (as a result the total of T = S + N slots is used for
new arrivals in frame n + 1).

4.3 Calculating the Transition Probabilities

In this subsection we indicate how to calculate the matrices A; and B; de-
scribed above. Define p,(q,q'), for ¢ > ¢', as the probability that in a set
of ¢ requests, ¢ — ¢’ request are successful when a set of x slots is used to
transmit the ¢ request packets®. We are particularly interested in ps(q,q'),
pn(q,q') and psin(q,q'). Von Mises [12] has shown, in 1939, that

min(q,z) | w
v+q—q' x q: (l‘ B v)q
px(Qaq’) = Z (_1) Fama quq’Cv (q _ U)' 24 ’ (2)
v=q—¢'

where C] denotes the number of different ways to choose s from r different
items. Equation 2 is numerically stable for the parameter ranges of inter-
est (x < 20). Tt is also possible to calculate the p,(q,q') values recusively
using the p,_1(q,¢') values, thus, higher parameter values do not cause any
problems.

Next, denote Py as an ¢, — 1 X ¢, — 1 matrix whose (4, )" element
equals py(i+ 1,5+ 1). Let Py be a ¢, — 1 x 1 vector whose i component
equals py(i+1,0). In order to describe the matrices A; and B; we also define

the matrices Fg, Fsyn, B 2 <k < ¢, and E%, .2 < k < gy, as (these

8This corresponds to the following combinatorial problem: provided that we, randomly,
distribute ¢ balls among a set of x urns, what is that probability that we have exactly
q — ¢’ urns holding a single ball.



matrices are [ X [ matrices)

Fs = Y Dipsl(i,0) (3)

i>0
Foen = Y Dipsin(i,0) (4)

i>0

i>k
Eé—I—N = ZDZ pS+N(i7k)7 (6)

i>k
where the D-BMAP arrival process is characterized by the matrices D;. No-
tice that (E@)j,j: represents the probability that a new TS with k£ requests is
generated in a frame where S slots are used for the new arrivals, thus, an-
other TS is currently in service in the remaining N slots, and the D-BMAP
governing the new arrivals makes a transition from state j to j'. Fg on the
other hand holds the probabilities that no new TS is generated in a frame
where S slots are used for new arrivals. Similar interpretations exist for the

matrices Fg,n and E§+N. The transition probability matrices A; and B; are
then found as follows:

Ay = Py®1I, (7)
A; = Pno® ((Fs)"'[EZ EY ... ET]), (8)
By, = [E§+N Eg+N Eg”?—N]’ (9)
B, = Fsin, (10)
B, = Pno® (Fs)', (11)

where ® denotes the Kronecker product between matrices and I; the [ x [
unity matrix. Notice that the matrices A; and B; decrease to zero according
to (Fs)'. Looking at the probabilistic interpretation of Fg, it should be clear
that, in general, the smaller the arrival rate A the slower A; and B; decrease
to zero. Therefore, the model is not suited for very small arrival rates A
(because this would imply that thousands of A; and B; matrices are needed
to perform the calculations).

4.4 Calculating the Steady State Probabilities

Define 7"(q,7),i > 0, resp. 7} (j), as the probability that the system is in
state (g, j,1), resp. (j,0), at time n, i.e., at the start of frame n. Let

m(j) = lim 7q(j), (12)
mi(g,j) = lim 77 (q, j). (13)

n—o0



Define the 1 x [ vector mq = (mo(1),...,m(l)) and the 1 X I(g, — 1) vectors
m = (m(2,1), ..., m(2,0), mi(3,1),...,m(3,0),m(4,1), ..., m(qm, 1)), © > 0.
From the transition matrix P (Equation 1) we see that the Markov chain is
a generalized Markov chain of the GI/M/1 Type [6]. From such a positive
recurrent Markov chain, we have m; = m; 1R, i > 1, where R is an [(g,,, — 1) X
[(¢m — 1) matrix that is the smallest nonnegative solution to the following
equation:

R=> R'A;. (14)

i>0

This equation is solved by means of an iterative scheme [6]. In order to
obtain 7y and 7; we solve the following equation

B B
(7T0,7T1) = (7T0,7T1) [ Z'>2 Rlz‘—QBi Z'>1]§i—1Ai . (15)

The vector (7, ) is normalized as moe; + 71 (I — R) 'ey(q,,—1) = 1, where I
is the unity matrix of size [(g, — 1) and e; is an i x 1 vector filled with ones.
Theorem 1.5.1 in [6] states that the Markov chain with transition matrix P
is positive recurrent if and only if the spectral radius sp(R) of the matrix R,
where R is the minimal nonnegative solution to Equation 14, is smaller than
one and there exists a positive solution to Equation 15. It is not difficult to
see that A = > A; is irreducible?, provided that the input D-BMAP is
irreducible, therefore a simple condition exists to check whether sp(R) < 1
(6, 7]. We could also check the positive recurrence by noticing that FS-
ALOHA, when subject to D-BMAP arrivals, is equivalent to a discrete time
MMAP[K]/PH[K]/1 queue with a generalized initial condition, where the
MMAPI[K] stands for a Markov chain with marked arrivals [5]. The stability
of such queues has been studied by He [4, Theorem 7.1].

4.5 Calculating the Delay Density Function

Let D be the random variable that denotes the delay suffered by a request
packet. We state that D = 0 if a request packet is successful during its first
attempt. D = i if a request packet is successful in frame n + ¢ provided that

9 After removing the possible (obvious) transient states of level Q > 0. Indeed, the
states (¢,7,@Q), for Q > 0, are transient if the j-th entry of the vector 02i>q D; equals
zero, where 6 is the stochastic stationary vector of .., D;. It is not necessary to remove
their corresponding rows and columns when calculating the steady state probabilities,
because the algorithm outlined in Section 4.4 will automatically assign a probability zero
to these states.



the first attempt took place in frame n. Using the steady state probabilities
we easily find

for i« > 0, with A the arrival rate of the D-BMAP, i.e., the mean number
of newly arriving request packets per frame. While P[D = 0] is found as

1—%,.,P[D=1l.

5 Performance Evaluation of FS-ALOHA on
a Channel with Memoryless Errors

In this section we relax the assumption on the BER made in the previous
section, and allow for memoryless errors to occur. From a practical point of
view, Markovian errors would probably be more appropriate, but there seems
to be no apparent way to incorporate such errors in the current model, even if
we were to restrict ourselves to Poisson arrivals. Perhaps a short explanation
is appropriate. If we assume Markovian errors, the number of requests in a
TS depends, among other things, upon the error state related to the frame in
which the TS is created. We define the error state as the state of the Markov
chain governing the errors. This is similar to the model in the previous
section where the number of requests in a TS depended, in a similar way,
on the state of the arrival process. However, with Markovian errors the
resolution of a TS with k requests is influenced by the error state, whereas
this is not the case for the state associated to the arrival process. Thus, if
we want to enrich the previous model with Markovian errors we need to keep
track of the error state in the current frame, and of the error state related to
the frame in which the TS currently in service was created; therefore, in order
to obtain a Markov chain that observes the system at every frame time—
a desirable property if we want to calculate the delay distribution with a
simple formula from the steady state probabilities—we need to keep track of
the entire history of the error state between these two time instances. This
would clearly result in an explosion of the state space, unless the Markov
chain has only one state, that is, if the errors are memoryless. Therefore, we
restrict ourselves to memoryless errors and state that an error occurs in a
slot with a probability 0 < e < 1.

Errors occurring on the channel influence the transmissions as follows. If
a slot holds a collision, that is, if two or more MSs transmit a request in the
same slot, then the BS, correctly, interprets this slot as a collision, whether



or not an error occurred in this slot. On the other hand, if a slot does not
hold a collision and an error does occur in the slot, the BS will, incorrectly,
interpret the slot as holding a collision. A slot that neither holds a collision
or an error is correctly recognized by the BS. As a result, a single error in
the slots dedicated to the new arrivals is sufficient to create a new TS; hence,
TSs with zero or one request exist, as opposed to the model in the previous
section. Also, the average number of frames required to resolve a TS with
k requests increases due to the presence of errors. The service of a TS ends
if the N slots, assigned to the service of TSs, do not hold an unsuccessful
transmission nor an error.

[t should be clear that the triple (g, j, Q) as defined in the previous section
is still a Markov chain of the GI/M/1 type. However, the entries and the
size, because TSs with zero or one request exist, of the matrices A4; and B;
have changed. These matrices will be denoted as fii and Bi in order to avoid
any confusion with the matrices of the previous section (this is also done for
other matrices or vectors that appear in both sections).

First, define p”(q, ¢') as the probability that in a set of ¢ requests, ¢ — ¢’
are successful when a set of z slots is used to transmit the ¢ request packets
and this provided that at least one error occurs in these z slots. Because the
errors are memoryless we have

v ck_ Ck
i (g,q) ZC (1—e)" >, mlen) TR (7)
q—v

v=max(0,q' —k)

where p,(q,q') was defined in Section 4.3 and e represents the probability
that an arbitrary slot holds an error. Obviously, we are interested in p% (q, ¢'),
px(q,¢') and pg, v(q,q").

Next, denote P¥ as a ¢, +1 X ¢, + 1 matrix whose (i, )" element equals
pN(i— 1,5 —1). Py is defined as a ¢ + 1 X ¢ + 1 matrix whose first
two columns are equal to zero and whose (i,7)" element, for j > 2, equals
(1—e)¥py(i—1,7—1). The ¢, + 1 x 1 vector PNO has its it" entry equal to
(I—e) Npn(i—1,0). Finally, the I x I matrices Fs, Fg, ES, for 0 < k < g,
and E5+N, for 0 < k < ¢y, are defined as

Fs = Y D;ps(i,0) (1—e)* (18)

i>0

Fs.n = ZDi ps+n (i, 0) (1 —e)5tY, (19)

i>0



Ef = ZDi [Lsoy ps(isk) (1 —e) +pg(i, k)], (20)

E§’+N = ZDZ' [1{k>0} ps+n(i, k) (1 — 6)S+N +p§+N(i, k)} , (21
i>k

where 14 = 1if A is true and 0 otherwise. Notice that p,(i, 1) = 0, therefore,
it is sufficient to write 1~y instead of 1yz~qy. The matrices Eﬁ hold the
probability that a new TS with £ > 0 requests is generated in a frame
where z slots are used for the new arrivals. Fx on the other hand holds
the probabilities that no new TS is generated. We are now in a position to
specify the matrices A; and B;:

A4 = (Pv+PH o1, (22)
A = 15N,0<g>((1319)i—1 [Eg BL ... E”gm]), (23)
By = [Bly Bhay o Blnyl, (24)
Bl - F5+N, (25)
B; = Pyno® (Fs) ', (26)

where [ is the [ x [ unity matrix. The steady state probabilities, denoted as 7;,
are calculated in a similar manner as before. Finally, the delay distribution
P[D =], for i > 0, is found as

pip =i =y WS 7y ) @

q=0

P[D = 0] is found as 1 — Y, , P[D = 1].

6 Numerical Results

In this section we explore the influence of correlation, burstiness, the number
of T"= S + N slots and memoryless errors on the delay distribution of a
request packet. A first, important, question that needs to be addressed is:
What type of D-BMAP arrivals should be considered, that is, are of practical
relevance ? Clearly, for any arrival rate A and medium access protocol we
can find a D-BMAP that causes delays as high as we like.

From Section 2 we know that if the traffic flow generated by an MS is
very irregular, the MS is obliged to use the contention channel frequently.
Therefore, depending on the characteristics of the traffic flow, we regard an
MS as either being in a period where most the requests are piggybacked to



the data packets transmitted in the contention free period, or in a period
where the contention channel is used to transmit most of the requests. As
a result, we will identify M different levels of activity, where a higher level
indicates that more MSs are in a period where the contention channel is
used frequently. We use M states to model these activity levels and state
that the number of requests generated in a frame, by the arrival process, in
state j is distributed binomially with parameters (jm, 3), where m and (3 are
parameters of the model. Hence, denoting (D;e);, for 1 < j < M, as the j-th
component of D; multiplied with e, an M x 1 vector with all entries equal to
one, results in

(Dse); = CI™B"(1 — B)Im=t, (28)

Transitions between these M states, occuring at the end of each frame, take
place according to the following M x M transitions matrix Py:

-]__aJF a+ 0 0
a” l—at —a~ at 0
Py = 0 a” l—at—a" ... 0 _ (29)
0 0 0 S ———

Therefore, (D;);, ., equals (D;e);, (Par)j, j,- Thus, the arrival process is char-
acterized by the following five parameters: M, m, 3, o~ and o™. In this
section, the parameters M and m are fixed at 6 and 5, whereas the param-
eter [ is set such that de arrival rate A is 0.27T requests per frame; hence,
the throughput on the contention channel is 20% (provided that the Markov
chain is positive recurrent). An average input rate of 20%, on a contention
channel, is considered as realistic because higher values would imply that the
number of contention slots 7" is underestimated by the network designer and
the network would have great difficulties in guaranteeing any QoS, whatever
protocol is used on the contention channel. Notice, with M = 6 and m = 5,
the mean arrival rate related to state j is 5j/6. Finally, it should be clear
that this arrival process is an M-state D-BMAP.

6.1 Poisson Arrivals vs. D-BMAP Arrivals

In this section we compare the delay distribution of a request packet for
Poisson and D-BMAP arrivals. For now, the bit error rate (BER) is equal
to zero; hence, we use the model presented in Section 4. For the D-BMAP
arrivals we fix at = o~ = 1/5, therefore, the mean sojourn time in a state
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Figure 2: Delay distribution for T = 10, Left: Poisson arrivals (A = 2),
Right: D-BMAP arrivals (M =6, m =5, a™ = o~ = 1/5 and  such that
the arrival rate A = 2).

is 2.5 frames. The number of contention slots T'= S + N = 10, whereas the
number of S and N slots varies and is represented in the figures as (S, N).
The results are presented in Figure 2.

A first, obvious, observation in Figure 2 is that the delays are larger for
D-BMAP arrivals. This follows from the fact that for Poisson arrivals the
mean arrival rate is always 2, whereas for the D-BMAP arrivals we have
periods were the mean arrival rate is as low as 2/3.5 = 4/7, being when the
arrival process is in state 1, and periods were the mean arrival rate is as
high as 24/7, being when the arrival process is in state M = 6. A second
observation is that the delay distribution decays exponentially'?, except for
N small. To some extent, this can be explained by means of Equation 16,
that is, if we forget about the ¢ in Equation 16 and approximate (1—1/N)?™!
by one, we get an exponential decay. Finally, in [3], it was shown that, for
Poisson arrivals, the best delays are obtained with S ~ N. Figure 2 seems
to confirm the usefulness of this engineering rule, which is also based on
the intuitive idea that S ~ N provides the best balance between the TSs
generation rate, related to S, and the TSs service times, related to N.

6.2 The Influence of the Number of Contention Slots
(T)
Apart from checking whether the engineering rule concerning the number

of S and N slots still applies, this section addresses the issue whether it
is worth implementing parallel instances of FS-ALOHA in the contention

10This is not exactly true, what we mean here is that this seems to be the case if we
consider the 1 to 10719 region only.



period. With parallel instances we mean the following. Suppose that we have
T = T,T5 contention slots, with 77 > 3. Then, we could use 75 instances
of FS-ALOHA, that each use 77 slots. New arrivals decide which instance
they use based on their arrival time—that is, we partition the frame in 75
subframes and any new arrival occurring in the i-th subframe, uses the i-th
instance!!. In this scenario we have T, distributed queues with TSs, instead
of one. Clearly, implementing multiple instances increases the complexity of
the algorithm, but perhaps the delay improvements outweigh the additional
implementation effort.

. . a9 ) . . . . . .
0 10 20 30 40 50 60 70 80 90 100 o 10 20
Delay (Number of Frames)

70 80 % 100

40 50 60
Delay (Number of Frames)

Figure 3: Delay distribution for D-BMAP arrivals (M = 6, m = 5, a* =
o~ = 1/5), Left: T =5 and (3 such that A = 1, Right: 7' = 15 and § such
that A = 3.

Figure 3 presents the results for T = S + N = 5 and T' = 15 contention
slots!?2. The input process is the same as in the previous paragraph, except
that [ is chosen such that A = 0.27. For T" = 5 the best results are found
for N larger than S, whereas for T = 15 we get the best results for S
slightly larger than 7. In conclusion choosing S ~ N seems like a useful
rule of thumb. As far as the parallel instances are concerned, we can see by
comparing the results for 7" = 5 and 15 that the delays can be reduced by
a factor two using three instances with 7" = 5 instead of one with 7" = 15.
Thus, if a network designer provisions a lot of contention slots, we suggest
to implement more than one instance of FS-ALOHA.

Hnstead of using their arrival time, a request could also select the instance randomly.
Given that the arrivals occur uniformly in a frame, these two scenarios are the same.

12Tt should be noted that, provided that the arrivals occur uniformly in a frame, we can
evaluate the performance of multiple instance by adapting the value of 8 appropriately.
Indeed, it is easy to show that -, C’;mﬂg(l—ﬂ)mi’g Ty h(A-Ty N9k = OB/ Ty)* (1—
B/Ty)™=k where Ty denotes the number of instances used.



6.3 Correlation and Burstiness

In this section we study the influence of the mean sojourn time on the delay
distribution. We start with a* = o~ = 1/2 and decrease both gradually
until 1/50, in which case the mean sojourn time in a state is 25 frames. The
results are in presented in Figure 4, the other parameters are the same as
in Section 6.1. From this figure we can conclude that the grouping strategy
works well in limiting the delay increase due to the augmented correlation
and burstiness.

1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100
Delay (Number of Frames)

Figure 4: Delay distribution for D-BMAP arrivals (M = 6, m = 5, § such
that A =2), T =10,S =N =5.

6.4 Errors on the Channel

In this section we investigate the influence of errors on the channel by means
of the model presented in Section 5. We start by setting e, the probability
that a slots holds an error, equal to 1/50,1/100 and 1/250. It is hard to
state whether such a value of e is an optimistic or pessimistic estimate as
the probability of an error depends on the modulation scheme, the signal-
to-noise ratio (SNR), the forward error control (FEC), length of a slot and
much more [8]. For a wired channel it is safe to say that e = 1/50 is very
pessimistic. We start by reproducing Figure 2 for e = 0,1/50,1/100 and
1/250 and S = N = 5. Numerical experiments, omitted for brevity, show
that errors have a similar impact on the delay for other choices of S and N,
with S + N = 10 (actually, the impact of errors is slightly smaller for larger
values of S).

The results are presented in Figure 5, where the curves for e = 0 where
obtained with the model in Section 4. A first, obvious, observation is that
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Figure 5: Delay distribution for 7' = 10,S = N = 5 and e =
0,1/250,1/100,1/50 , Left: Poisson arrivals (A = 2), Right: D-BMAP ar-
rivals (M = 6, m = 5, at = a~ = 1/5 and 8 such that the arrival rate
A =2).

the delay increases with increasing e. Moreover, the results show that the
increase for Poisson arrivals is less compared to D-BMAP arrivals. Thus,
models that study the impact of errors using Poisson arrivals are, from a
practical point of view, somewhat optimistic. Therefore, we use D-BMAP
arrivals for our remaining experiments. Finally, although the impact on the
delay distribution is small for e = 1/100 or smaller, errors can seriously
increase the delay for higher error rates (for e = 1/20 the delays are more
than three times as high compared to e = 0). Therefore, if the modulation
scheme, error codes, signal-to-noise ratio, ... cannot guarantee an error rate
e less than 1/5T, the performance of FS-ALOHA might degrade drastically.

This rule is confirmed by Figure 6, where we study FS-ALOHA for T'=5
and 15. For T" = 15 the Markov chain becomes transient for e > 1/20
(actually, the chain becomes unstable for e somewhere in between 1/20 and
1/21). For Poisson arrivals and T' = 15 we get instability for e > 1/19, thus
the instability is only slightly influenced by the arrival process and is mainly
determined by the error rate.

These observations further indicate that the use of multiple instances of
FS-ALOHA, each with a small value of 7', is not only better in terms of the
suffered delay, but also improves the sensitivity of the algorithm to errors.
As a result, we strongly support the use of multiple instances for wireless
networks, i.e., networks with high error rates.
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Figure 6: Delay distribution for D-BMAP arrivals (M = 6, m = 5, a* =
o~ = 1/5 and /3 such that the arrival rate A = 0.2T"), e = 0 to 1/20 , Left:
T=55=2N=3 Right: T=15S=8 N ="T.

7 Conclusions

In this paper we have evaluated the robustness of FS-ALOHA, a random
access algorithm, by means of an GI/M/1 Type Markov chain. The robust-
ness was investigated by relaxing prior assumptions [3] made on the arrival
process, that is, discrete time batch Markovian arrivals were considered as
opposed to Poisson arrivals. Moreover, memoryless errors were also added to
the channel. Using the analytical model, it is concluded that FS-ALOHA, in
general, performs well under correlated and bursty arrivals and memoryless
errors. However, error rates above 1/57, were T' is a protocol parameter, can
seriously increase the delays suffered on the contention channel and might
even make the system unstable at moderate arrival rates. It should be men-
tioned that FS-ALOHA++ [2] might, to some extent, improve the stability of
FS-ALOHA on a channel with errors, because FS-ALOHA-++ services mul-
tiple TSs simultaneously, thereby reducing the penalty introduced by empty
transmission sets. This and many other properties of FS-ALOHA++ are
reported in [10], where we also use matrix analytic methods to obtain the
performance measures of interest. Finally, it is concluded that implementing
multiple instances of FS-ALOHA can significantly improve the delays and the
robustness of the algorithm and is therefore advisible for wireless channels
with high error rates.
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