
04/12/06 - Marc Leeman
 1

Control for High 
Availability, Mission 
Critical Networked 

Visualisation Systems

Barco 
Security and Monitoring Division

Marc Leeman, Ph.D.



04/12/06 - Marc Leeman
 2

Overview

● Software Definition
● Hardware Overview
● Barco SMD Case Study

● Typical Causes for Errors
● Design Considerations
● Reliable, Predictable
● Embedded Software
● System Layout
● Software Control
● Fall Back: serial

● Conclusions



04/12/06 - Marc Leeman
 3

What is Software?

● Software =/= Java/C++
● Algorithmic form

● e.g. C code
● Relational form

● e.g. VHDL
● Software fundamentally is the unique image or 

representation of physical or material alignment 
that constitutes configuration to or functional 
identity of a machine, usually a computer.

● Not all fault tolerance needs to be 
done in one component (e.g. uC) 
on one die.



04/12/06 - Marc Leeman
 4

Overview

● Software Definition
● Hardware Overview
● Barco SMD Case Study

● Typical Causes for Errors
● Design Considerations
● Reliable, Predictable
● Embedded Software
● System Layout
● Software Control
● Fall Back: serial

● Conclusions



04/12/06 - Marc Leeman
 5

Hardware Overview

● microprocessor/microcontroller 
(uP/uC)
● ia86, ia86-64
● powerpc, arm, m68k, ...

● Digital Signal Processor
● special class of uP
● for digital signal processing (e.g. video 

and audio sampling and processing).
● Instructions in parallel
● Deep instruction pipeline
● Specialised instructions (e.g. vector 

operations).



04/12/06 - Marc Leeman
 6

Instruction Pipeline



04/12/06 - Marc Leeman
 7

Hardware Overview (cont.)

● Field Programmable Gate Arrays
● Parallel execution
● Gates are programmed to mimic logic 

gates



04/12/06 - Marc Leeman
 8

Hardware Overview (cont.)

● Application Specific Integrated 
Silicon

● expensive to develop
● Highly dedicated, efficient and 

performant devices.
● Performs one and only one function.

● Off The Shelf usage (COTS)



04/12/06 - Marc Leeman
 9

Notes

● Distinction between these device 
classes is not so clear cut anymore

● uP has DSP properties
● e.g. vector operations

● DSPs are equiped with uP cores
● Da Vinci platform from TI

● FPGAs contain uP soft and 
hardcores



04/12/06 - Marc Leeman
 10

Cost/Design

● Application Specific Integrated 
Circuits (ASICs) are cheap to 
produce but expensive to create

● large initial investment costs
● large volumes

● FPGAs are more expensive but 
lower initial development cost

● small to middle sized volumes.



04/12/06 - Marc Leeman
 11

What is Software? (cont.)

● Hardware can be viewed as 
inanimate matter; it needs to be 
correct to function properly.

● Body
● Software makes the hardware 

alive.
● Flexible.
● Can compensate for errors (cf. brain 

function recovery).



04/12/06 - Marc Leeman
 12

What is Software? (cont.)

● Writing software is playing god (on 
a system level)?



04/12/06 - Marc Leeman
 13

Overview

● Software Definition
● Hardware Overview
● Barco SMD Case Study

● Typical Causes for Errors
● Design Considerations
● Reliable, Predictable
● Embedded Software
● System Layout
● Software Control
● Fall Back: serial

● Conclusions



04/12/06 - Marc Leeman
 14

Barco SMD case study

● Streaming Video Card
● Take in video and decode it

● mpeg{2|4}, wavelet based, mjpeg, 
mxpeg, ...

● vendor 'extensions'
● up to 8 streams on one card

● 1 Altera Stratix II FPGA
● 5 DSP C64 DSPs
● 1 PowerPC 8347 processor



04/12/06 - Marc Leeman
 15

Typical Causes for Errors

● Hardware failure/bugs
● MAC hangs

● Software bugs
● segfault, out of memory.

● Unforeseen circumstances.
● Peripheral network

● switches, routers, network settings, ...
● STEUs (STupid End Users)

● the most dangerous are not those that 
don't know the system but those that 
think they know the system.



04/12/06 - Marc Leeman
 16

Design Considerations

● Dependability
● High Availability
● Reliable
● Predictable
● Maintenance
● Security

● Cost
● With these in mind, select an 

optimal combination of devices 
that adequately cover the 
functionality 



04/12/06 - Marc Leeman
 17

Reliable

● Hardware
● High uptime
● Error correction
● Redundancy

● Component Level
● e.g. networking interfaces

● Board Level
● Hot swap

● in case of hardware failure/other unresolvable 
problems

● System Level
● e.g. hot stand-by



04/12/06 - Marc Leeman
 18

Reliable (cont.)

● Software
● Correct BEFORE the faults occur

● Inspect and correct data stream
● Negociate settings

● Cope with Hardware changes
● e.g. restore settings

● Cope/Mask Hardware failures
● e.g. MAC lock
● Corrupted flash sectors

● Catch unforeseen circumstances
● power-failure while writing to persistent 

media



04/12/06 - Marc Leeman
 19

Predictable

● A predictable situation is always to 
be preferred over a unknown state.

● Uncertainty = 666.
● High cost for recovery and 

reconfiguration.
● Downtime.

● Basis for recovery.
● It is better to resort to an old 

predictable situation than to a 
another unpredicatable one.



04/12/06 - Marc Leeman
 20

Embedded Software

● Systems are stand-alone/headless
● no keyboard
● no screen

● Some (older) systems do not 
provide a serial interface

● Access:
● shell
● BDI/JTAG probe



04/12/06 - Marc Leeman
 21

Small is Beautiful
speed increase RAM reduction Power reduction Cost reduction

More speed

Less RAM - Faster Allocations

- Less swapping

Less space - less ram usage

Less power -Cheaper batteries

- Less design errors

- CPU can run slower or 
stay longer in power 
saving mode

-Slower, cheaper 
CPU

-fewer/smaller RAM 
chips: less dynamic 
and standby power

- Fewer/cheaper 
RAM chips

- CPU with less cache: 
less power

- CPU with less 
cache: cheaper

- Sometimes less 
cache flushing

- Faster application 
loading from 
storage and in RAM

- Fewer/smaller storage 
chips: less power

- Fewer/cheaper 
storage

- Sometimes 
simpler, faster code

Less 
complexity



04/12/06 - Marc Leeman
 22

Overview

● Software Definition
● Hardware Overview
● Barco SMD Case Study

● Typical Causes for Errors
● Design Considerations
● Reliable, Predictable
● Embedded Software
● System Layout
● Software Control
● Fall Back: serial

● Conclusions



04/12/06 - Marc Leeman
 23

System Layout

● Bootloader: Das U-Boot
● flexible, reliable, redundancy, ...

● Kernel: Linux
● reliable, modifiable, flexible, ...
● open: no hidden complexity
● closed 3rd party Oses: difficult to 

obtain a measure of reliability
● Code quality of 'closed source' OSes is 

poor (cf. Windows CE and XP 
embedded).

● No peer review



04/12/06 - Marc Leeman
 24

System Layout (cont.)

● System level:
● uclibc +busybox

● uclibc: Smaller footprint wrt to glibc 
applications

● busybox: shared (startup) code
● Custom application firmware, CGI, 

mDNS and dropbear for shell 
access.



04/12/06 - Marc Leeman
 25

Das U-Boot

● Hardware initialisation and setup
● set CPU (MPC8245 and MPC8347) 

Registers
● some registers can only be set @startup

● GPIO/Interrupt
● MMU activation

● Loads Linux kernel from flash in 
memory and extracts it

● adjust PC
● serial, hardware inspection, 

scripting, ...



04/12/06 - Marc Leeman
 26



04/12/06 - Marc Leeman
 27

Linux Kernel

● Linux =/= OS =/= distribution!
● GNU/Linux, GNU+Linux, ...

● Single point of access to hardware
● All application must pass through the 

kernel to access components
● User separation

● (Dependability)



04/12/06 - Marc Leeman
 28

The Linux Kernel
● Basic hardware detection and 

initialisation
● In the kernel image is needed:

● minimal configuration to allow recognition 
of root FS

● hardware with for root partition
● SCSI, IDE, LIBATA, FLASH, MAC/PHY, ...

● File system
● ext2, ext3, jfs, xfs, nfs, reiserfs, ...

● What is not needed:
● Firewall (iptables), keyboard, mouse, ... 

(peripherals)
● Can be postponed to the final stages of 

booting



04/12/06 - Marc Leeman
 29

The Linux Kernel (cont.)

● Good Practice
● only include the needed functionality
● only include the needed complexity

● Modules offer an extra level of 
abstraction: it is/is not in the 
kernel.



04/12/06 - Marc Leeman
 30



04/12/06 - Marc Leeman
 31

uClibc

● glibc (GNU C library): 
http://www.gnu.org/software/libc/
Found on most computer type GNU/Linux 
machines
Size on arm: approx 1.7 MB

● uClibc: http://www.uclibc.org/
Found in more and more embedded Linux 
systems!
Size on arm: approx 400 KB (you save 1.2 MB!)

C program Compiled with shared libraries Compiled statically
glibc uClibc glibc uClibc

Plain “hello world” 4.6 K 4.4 K 475 K 25 K
Busybox 245 K 231 K 843 K 311 K

http://www.gnu.org/software/libc/
http://www.uclibc.org/


04/12/06 - Marc Leeman
 32

busybox

● combine unix utilities in one single 
small executable

● share startup code
● configurable commands
● configurable functionality of the 

commands
● applets easy to add



04/12/06 - Marc Leeman
 33

System Level

● CGI
● Provide access levels: unauthorised 

access can result in parameter 
corruption

● Dropbear
● Encrypted and Secure access



04/12/06 - Marc Leeman
 34

Overview

● Software Definition
● Hardware Overview
● Barco SMD Case Study

● Typical Causes for Errors
● Design Considerations
● Reliable, Predictable
● Embedded Software
● System Layout
● Software Control
● Fall Back: serial

● Conclusions



04/12/06 - Marc Leeman
 35

What Now?

● We've minimised the possible fault 
footprint by carefully chosing our 
software modules

● Finished?
● NO
● We need to compensate for 

hardware/component failure
● Software Control



04/12/06 - Marc Leeman
 36

Software Control

● Though hardware provisions are 
taken for failures, software fine-
grained software control is 
required at all levels to tackle 
failures

● Board Level
● CPU configuration
● Operating System
● UserSpace applications

● System Level



04/12/06 - Marc Leeman
 37

Board Level

● CPU configuration
● RTC/Watchdog
● Hardware provision in silicon to detect 

CPU lockups
●  reset CPU

● Network
● bonding module (bonding.ko)

● 2 physical interfaces provide one logical 
interface to the applications

● one fails, the second interface takes over



04/12/06 - Marc Leeman
 38

Board Level (cont.)

● bonding.ko is the kernel interface
● ifenslave binds physical interfaces 

to the bonding interface
● a monitoring (e.g. 10 ms) interval 

is provided.



04/12/06 - Marc Leeman
 39

Board Level (cont.)

● Configuration/Save
● CRC32 checks validity/corruption of 

data (e.g. jffs2.ko)
● Flash

● writing to flash is slow
● erase flash: set all words to 0xffffffff
● toggle relevant bits back to 0
● done on block size (64/128 kB).
● Writing one bit in flash can cause the 

erase of 128 kB and re-writing 
(128*2^1024 - 1 ) to 0



04/12/06 - Marc Leeman
 40

Board Level (cont.)

● Redundant flash partition
● CRC checked
● bit valid toggle
● write to flash

● toggle current flash data as not valid
● burn data to flash with valid bit

● restore from flash
● check for valid bit
● check CRC

● if CRC is not valid, check backup
● if backup CRC not valid; restore with sensible 

defaults



04/12/06 - Marc Leeman
 41

Board Level (cont.)

● Current fails systems are within 
one device

● FPGA plays master over processor
● watchog daemon passes alive beat 

to FPGA
● if watchdog is not asserted, FPGA 

brings processor in reset.



04/12/06 - Marc Leeman
 42

Board Level (cont.)

● DSP: Processor without MMU
● no protection for different memory 

segments
● rogue pointers can corrupt 

data/program memory
● a reload of the program/OS is required

● Processor watches DSP (#decoded 
frames)

● re-loads when #frames does no longer 
increment/changes



04/12/06 - Marc Leeman
 43

System Level

● Several boards in one case
● 'board manager'

● Several cases in one system
● boards backup their data to central 

point
● when one board fails and is replaced 

(hot plug), board manger provides the 
needed details to restrieve settings 
from failed boards from central point



04/12/06 - Marc Leeman
 44

System Level (cont.)

● At startup of a system
● Code is loaded from the board itself

● modular
● changes isolated per board

● Code is loaded via a backplane
● changes are system/node wide
● 1 upgrade upgrades the system/node



04/12/06 - Marc Leeman
 45

Low-Level Fall-Back

● Serial interface
● simple protocol
● 2 lines/pins

● Spawn a shell on /dev/ttyS0
● serial shell access

● Debugging messages are sent to 
serial

● Access to bootloader
● inspect hardware
● replace flash images



04/12/06 - Marc Leeman
 46

Overview

● Software Definition
● Hardware Overview
● Barco SMD Case Study

● Typical Causes for Errors
● Design Considerations
● Reliable, Predictable
● Embedded Software
● System Layout
● Software Control
● Fall Back: serial

● Conclusions



04/12/06 - Marc Leeman
 47

Conclusions

● Reliability needs to be taken into 
account during the entire product 
design.

● HW/SW reliability are 
complementary:

● SW masks/corrects HW faults
● HW masks/corrects SW faults

● HW/SW Co-design



04/12/06 - Marc Leeman
 48

Conclusions (cont.)

● You can only write reliable software 
as long as you keep a clear view on 
the underlying hardware.

● e.g.:
● What are the effects of code on an instruction 

level?
● What are the effects of code on memory 

usage?
● How does memory usage influence runtime 

behaviour?


